Astrocyte-mediated Short-term Synaptic Depression

نویسنده

  • My Andersson
چکیده

Short-term synaptic plasticity, the activity-dependent regulation of synaptic efficacy that occurs in the timeframe of milliseconds to seconds, is a fundamental property of the synapse, mostly attributed to changes in release probability. These changes are commonly ascribed to intrinsic mechanisms in the presynaptic terminal and to different transmitters acting on the presynaptic terminal. Astrocytes are the most abundant cell type in the brain. It has become increasingly clear that they can have a more active role in regulating neuronal signalling than their first established role of providing neuronal support. Astrocytes send out processes, which enwrap the synapses, in an ideal position to respond to synaptic transmission and in turn modulate synaptic function, such as short-term plasticity. However, not much is known about how astrocytes affect short-term synaptic plasticity. The overall objective of this thesis was to examine the possible involvement of astrocyte-synapse signalling in short-term synaptic plasticity in the hippocampus. We used the acute rat hippocampal slice preparation and recorded the transmission at the glutamatergic CA3-CA1 synapses using extracellular and whole-cell patch-clamp recordings. Hippocampal CA3-CA1 synapses as a population exhibit facilitation or augmentation milliseconds and seconds after a brief synaptic burst. However, we found that in the intermediate timeframe, between a couple of hundred milliseconds to seconds, these synapses exhibit a postburst depression (PBD). This PBD was found to be expressed as a reduction of release probability. The PBD displayed a cooperativity threshold as it was necessary to activate a critical number of synapses in order to elicit the depression. We found that the PBD develops over the first three postnatal weeks and that it is blocked when astrocyte metabolism is compromised. The PBD was blocked when a calcium chelator was delivered into the astrocytic network through a patch pipette, showing a requirement for astrocytic signalling. Activation leading to PBD homosynaptically, also gave rise to a decrease in release probability in neighbouring inactive synapses, a transient heterosynaptic depression (tHeSD). The tHeSD developed over the same period as the PBD and was blocked by a blocker of astrocyte metabolism. In addition, the tHeSD was blocked by application of gap junction blockers. The tHeSD relied on GABAB and mGlu II/III receptors, but not on NMDA, adenosine A1 or mGlu I receptors. Analysis of paired-pulse plasticity and relative vesicle pool size suggest that the tHeSD is expressed as a depression of resting vesicular release probability, causing a large increase of the paired-pulse ratio. In addition, the PBD was suggested to be a combination of vesicle depletion and augmentation, causing no change and a large decrease in paired-pulse ratio, respectively. Hippocampal pyramidal neurons typically fire action potentials in short bursts in the behaving animal, at frequencies suitable for eliciting the PBD and the tHeSD. This suggests that astrocytes are critically involved in mediating a negative feedback on synaptic transmission after a burst of synaptic activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Astrocyte-mediated Short-term Synaptic Plasticity

Short-term synaptic plasticity, the activity-dependent regulation of synaptic efficacy that occurs in the timeframe of milliseconds to seconds, is a fundamental property of the synapse, mostly attributed to changes in release probability. These changes are commonly ascribed to intrinsic mechanisms in the presynaptic terminal and to different transmitters acting on the presynaptic terminal. Astr...

متن کامل

Heterosynaptic long-term depression mediated by ATP released from astrocytes.

Heterosynaptic long-term depression (hLTD) at untetanized synapses accompanying the induction of long-term potentiation (LTP) spatially sharpens the activity-induced synaptic potentiation; however, the underlying mechanism remains unclear. We found that hLTD in the hippocampal CA1 region is caused by stimulation-induced ATP release from astrocytes that suppresses transmitter release from unteta...

متن کامل

Astrocytes impose postburst depression of release probability at hippocampal glutamate synapses.

Many neurons typically fire action potentials in brief, high-frequency bursts with specific consequences for their synaptic output. Here we have examined short-term plasticity engaged during burst activation using electrophysiological recordings in acute rat hippocampal slices. We show that CA3-CA1 glutamate synapses exhibit a prominent depression of presynaptic release probability for approxim...

متن کامل

Astrocytes Mediate In Vivo Cholinergic-Induced Synaptic Plasticity

Long-term potentiation (LTP) of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of th...

متن کامل

A Tale of Two Stories: Astrocyte Regulation of Synaptic Depression and Facilitation

Short-term presynaptic plasticity designates variations of the amplitude of synaptic information transfer whereby the amount of neurotransmitter released upon presynaptic stimulation changes over seconds as a function of the neuronal firing activity. While a consensus has emerged that the resulting decrease (depression) and/or increase (facilitation) of the synapse strength are crucial to neuro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009